- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Alario, Ashley (1)
-
Delmore, Kira E. (1)
-
Johnsson, Robin D (1)
-
Justen, Hannah (1)
-
Rice, Amber M (1)
-
Roth, Timothy C (1)
-
Roth, Timothy C. (1)
-
Semenov, Georgy A (1)
-
Taylor, Scott A (1)
-
Trevino, Marlene (1)
-
Woodman, Constance J. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Hybridization occurs when different species mate and produce offspring. Although hybridization can have negative consequences for cognitive performance, the mechanisms underlying those effects are still poorly understood. A fundamental physiological process found in all animals studied to date that could be disrupted in hybrids is sleep. Given that mechanisms that occur within the brain during sleep may help maintain optimal cognitive performance, here we outline the potential impacts of hybridization on sleep and cognition. We suggest that sleep loss caused by hybridization could lead to negative impacts for neural and molecular mechanisms (e.g. neurogenesis, synaptic plasticity, and brain gene expression) associated with cognition, which may help explain some of the cognitive deficiency recently observed in hybrid birds. However, we acknowledge that these mechanisms may instead be directly impacted by hybridization, which in turn could also disrupt sleep with similar negative consequences for cognition. Limitations in sleep processes apparent in hybrids might influence hybrid fitness and therefore act as a post‐zygotic isolating barrier.more » « lessFree, publicly-accessible full text available February 1, 2027
-
Alario, Ashley; Trevino, Marlene; Justen, Hannah; Woodman, Constance J.; Roth, Timothy C.; Delmore, Kira E. (, Scientific Reports)Abstract Hybrid zones can be used to identify traits that maintain reproductive isolation and contribute to speciation. Cognitive traits may serve as post-mating reproductive isolating barriers, reducing the fitness of hybrids if, for example, misexpression occurs in hybrids and disrupts important neurological mechanisms. We tested this hypothesis in a hybrid zone between two subspecies of Swainson’s thrushes (Catharus ustulatus) using two cognitive tests—an associative learning spatial test and neophobia test. We included comparisons across the sexes and seasons (spring migration and winter), testing if hybrid females performed worse than males (as per Haldane’s rule) and if birds (regardless of ancestry or sex) performed better during migration, when they are building navigational maps and encountering new environments. We documented reduced cognitive abilities in hybrids, but this result was limited to males and winter. Hybrid females did not perform worse than males in either season. Although season was a significant predictor of performance, contrary to our prediction, all birds learned faster during the winter. The hypothesis that cognitive traits could serve as post-mating isolating barriers is relatively new; this is one of the first tests in a natural hybrid zone and non-food-caching species. We also provide one of the first comparisons of cognitive abilities between seasons. Future neurostructural and neurophysiological work should be used to examine mechanisms underlying our behavioral observations.more » « less
An official website of the United States government
